If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+27-520=0
We add all the numbers together, and all the variables
x^2-493=0
a = 1; b = 0; c = -493;
Δ = b2-4ac
Δ = 02-4·1·(-493)
Δ = 1972
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1972}=\sqrt{4*493}=\sqrt{4}*\sqrt{493}=2\sqrt{493}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{493}}{2*1}=\frac{0-2\sqrt{493}}{2} =-\frac{2\sqrt{493}}{2} =-\sqrt{493} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{493}}{2*1}=\frac{0+2\sqrt{493}}{2} =\frac{2\sqrt{493}}{2} =\sqrt{493} $
| -4n+1+3n=5 | | h-2.4=-6.4 | | (2x+5)2=36 | | 5+-8m=13 | | -4n-4+3n=-4 | | t=-16t^2+50t-24 | | 5y/37-48=5 | | 5(x-3)=-5(x-3) | | a/7=-4.5 | | 35a^2=-10a | | -4=-1n-0n-3 | | -4=1n-0n-3 | | n/4+(-3)=8 | | ((x^2)+(x^2)+(18^2))^(1/2)=200 | | -13=-2.9+f | | 2x^2+33x+135=0 | | (x^2+x^2+18^2)^(1/2)=200 | | 5/4(2l)+2l=24 | | 4(x+3)−4=8(1/2x+1) | | -8=3n+2n+2 | | 2x+X^2=1260 | | 3.8=z/4 | | 4x+-9=-1 | | (0.1—2x)²=10x² | | 27x+27=54 | | 32-2x=18 | | 28=4-2n-4n | | -6(6x-7)=-282 | | -6=-6.5+v | | (1000p-5000)/1000p=0.25 | | 5y-26=4y+4 | | 5(c-7)=6(c+2) |